
Leveraging Fast I/O of Unikernel
in QUIC Protocol

Master’s Thesis Defense
Jaeseok Huh

1

Committee

Prof. Sue Moon Prof. Dongman Lee Prof. Jaehyuk Huh

Dec 14, 2020

Leveraging Fast I/O of Unikernel
in QUIC Protocol

Master’s Thesis Defense
Jaeseok Huh

2

Committee

Prof. Sue Moon Prof. Dongman Lee Prof. Jaehyuk Huh

Dec 14, 2020

The QUIC (Quick UDP Internet Connections) Protocol

3Langley et al. "The quic transport protocol: Design and internet-scale deployment." SIGCOMM ‘17

A Brief History of QUIC

4

‘12

Designed
by Jim Roskind
@Google

Langley et al. "The quic transport protocol: Design and internet-scale deployment." SIGCOMM ‘17

Facebook
deploys (75%)31%

Google
deploys

Egress traffic

Chromium
features QUIC

Estimated
9.1% of traffic

IETF QUIC WG
formed

HTTP-over-QUIC
becomes HTTP/3

‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 ‘20

Benefits of QUIC

● Avoids protocol/implementation entrenchment
○ as implemented in user space and encrypting header

● Reduces latency
○ Fewer handshake (i. TCP->UDP; ii. by reusing the server’s cipher info.)
○ No transport-level HOL (Head-Of-Line) blocking

● Improves loss recovery
○ distinguishes the ACK of a re-TX from that of an original TX

5

QUIC’s Problem: Higher CPU Consumption

● QUIC is fully implemented in user space by design
○ It incurs additional context switches and data copy between user & kernel space
○ Its ACK, Congestion Control (CC), and re-TX take place in user space

● Google reported* 2.0x as high CPU consumption as TCP/TLS stack
● On mobile devices, QUIC’s CC is application-limited for 58% of the time**

6*Langley et al. "The quic transport protocol: Design and internet-scale deployment." SIGCOMM ‘17
**Kakhki et al. "Taking a long look at QUIC: an approach for rigorous evaluation of rapidly evolving transport protocols." IMC ‘17

TCP: TX/RX/ACK/CC UDP

QUIC: TX/RX/ACK/CC

kernel

user

CPU Consumption: TCP/TLS vs QUIC

7* All are the server’s CPU-bound / Repeated 2GB File Transfer

CPU Breakdown

8* All are the server’s CPU-bound / Repeated 2GB File Transfer

Our Solution: Unikernel

● Highly-specialized, single-address-space kernel
○ In sendmsg()/recvmsg(), one data copy is saved
○ Context switches becomes quicker
○ System calls become function calls

● Includes a minimal set of apps & libs
● Runs directly over hypervisor (or HW)
● Sealed against run-time modification

9

QUIC Implementations

● 23 are listed by the QUIC Working Group

● Interoperability has been a primary focus; no performance work so far

10Seemann, Marten, and Jana Iyengar. "Automating QUIC Interoperability Testing." EPIQ ‘20

.

.

.

Selection Criteria for QUIC Impls.

From the list, we pick ones that

● are open-sourced
● provide minimal testing interface
● support draft-29 (Jun 2020) or later
● have 100+ GitHub stars, if hosted by GitHub

And rule out

● “Not performant” (Chromium) or “not for production” (Kiwk)
● Apache-based ones (ATS); due to the difficulty in Unikernel-porting

11

Performance of QUIC Implementations

12

Name Maintainer(s) Goodput (Mbps) Language

Apache2 (TCP/TLS) Apache2 1,783 C/C++

MsQuic Microsoft 1,250 C

Mvfst Facebook 304 C/C++

Picoquic Non-affiliated retiree 903 C

Quiche CloudFlare 797 Rust

Quicly Fastly 1,491 C

Quic-go Unaffiliated hobbyists (loopback) 470 Go

Name Maintainer(s) Goodput (Mbps) Language

Apache2 (TCP/TLS) Apache2 1,783 C/C++

MsQuic Microsoft 1,250 C

Mvfst Facebook 304 C/C++

Picoquic Non-affiliated retiree 903 C

Quiche CloudFlare 797 Rust

Quicly Fastly 1,491 C

Quic-go Unaffiliated hobbyists (loopback) 470 Go

Performance of QUIC Implementations

13

Shown[*]

robust

Performant

[*] Yang et al. "Making QUIC Quicker With NIC Offload." EPIQ ‘20

OSv Unikernel

● From Cloudius in 2014
● Designed for cloud VMs

● Seen wide community support

● “Can run unmodified Linux executables (with some limitations)”

14Kivity et al. "OSv—optimizing the operating system for virtual machines." USENIX ATC ‘14

Porting Picoquic & Quicly into OSv

● OSv implements only a subset of POSIX (“some limitations”)
○ Thus, we removed setsockopt()’s for ECN, MTU discovery, and IPv6

● All libraries and configuration files must be identified and incorporated
○ The build scripts of all dependencies are re-written

● Transport-layer offloads are off
● Ensure no disk read/write
● Enlarge the buffer size
● Enforce the same CPU/compiler flags and cipher suite

15

Experiment: Settings

16

QUIC Implementation

● Draft-29
● AES128-GCM-SHA256
● “-O2”

Machine

● Intel Xeon X5650@ 2.67GHz (24 core)
○ Used only one core unless otherwise specified

● DDR3 20GB (Cli.) / 24GB (Serv.)

Ubuntu 18.04 Ubuntu 18.04
(KVM enabled)

QEMU v2.11
(KVM installed)

Intel X520-DA2
10GbE

Intel X520-DA2
10GbE

RTT
0.194

± 0.011ms

< OSv
 Server >

<Client>

QUIC on OSv

QUIC Impl.

Linux-Linux vs. Linux(Cli.)-OSv(Serv.)

17

Ubuntu 18.04 Ubuntu 18.04
(KVM enabled)

Intel X520-DA2
10GbE

Intel X520-DA2
10GbE

RTT
0.194

± 0.011ms

<Linux
Server>

<Client>

QUIC Impl. QUIC Impl.

vs. Ubuntu 18.04 Ubuntu 18.04
(KVM enabled)

QEMU v2.11
(KVM installed)

Intel X520-DA2
10GbE

Intel X520-DA2
10GbE

RTT
0.194

± 0.011ms

< OSv
 Server >

<Client>

QUIC on OSv

QUIC Impl.

Experiment: Methodology

● Goodput
○ Requesting a single file of size from 2KB to 2GB
○ 30 runs, after 3 runs discarded for warm-up

● Response Time
○ 100,000 1-byte requests in total, originating from 144 clients

● Request Per Time (RPS)
○ 100,000 2KB file requests, from 144 clients

18

Goodput

19Picoquic Quicly

+9.44%

-10.12%

Goodput: CPU Breakdown

20Picoquic Quicly

µs/pkt Linux Serv. OSv Serv. Change
TLS 3.76 3.24 -13.99%
sendmsg() 5.71 3.93 -31.17%
recvmsg() 0.50 0.32 -35.81%
ACK Handling 0.47 0.35 -25.55%
Remaining 8.53 9.15 7.24%
Total 18.97 16.99 -10.48%

Goodput (Mbps) 852.04 932.40 9.43%

µs/pkt Linux Serv. OSv Serv. Change
TLS 2.02 3.27 61.77%
sendmsg() 3.39 2.17 -35.94%
recvmsg() 0.09 0.07 -27.64%
ACK Handling 0.08 0.12 43.03%
Remaining 0.85 1.60 87.10%
Total 6.4 7.22 12.17%

Goodput (Mbps) 1,783.62 1,603.19 -10.12%

Response Time (CDF)

21Picoquic Quicly

RTT
0.19 ms

RTT
0.19 ms

Response Time: CPU Breakdown

22

µs/pkt Linux Serv. OSv Serv. Change
TLS 5.86 5.72 -2.46%
sendmsg() 8.83 8.70 -1.46%
recvmsg() 3.85 3.80 -1.29%
ACK Handling 1.50 1.44 -4.11%
Remaining 12.96 13.64 +5.21%
Total 33.01 33.30 +0.88%

Res. Time (ms) 5.42 5.47 +0.92%

µs/pkt Linux Serv. OSv Serv. Change
TLS 4.78 6.48 +35.55%
sendmsg() 7.65 7.00 -8.56%
recvmsg() 3.46 3.36 -2.84%
ACK Handling 0.48 0.69 +42.82%
Remaining 6.22 8.97 +44.14%
Total 22.60 26.50 +17.26%

Res. Time (ms) 5.318 6.55 23.17%

Picoquic Quicly

Request Per Second (RPS)

23Picoquic Quicly

-0.7%

-16.1%

RPS: CPU Breakdown

24

µs/req Linux Serv. OSv Serv. Change
TLS 12.43 15.78 26.99%
sendmsg() 22.91 19.98 -12.76%
recvmsg() 3.58 3.45 -3.64%
ACK Handling 2.75 3.26 +18.43%
Remaining 23.78 24.61 +3.48%
Total 65.44 67.08 +2.50%

RPS 1824.38 1812.05 -0.68%

µs/req Linux Serv. OSv Serv. Change
TLS 9.12 11.90 30.55%
sendmsg() 13.87 12.72 -8.31%
recvmsg() 5.74 5.49 -4.23%
ACK Handling 0.79 1.12 41.50%
Remaining 10.31 15.53 50.73%
Total 39.82 46.77 17.44%

RPS 2204.2 1848.76 -16.13%

Picoquic Quicly

Conclusion

● We instrumented 6 QUIC implementations and measured goodput

● We ported two of them into OSv Unikernel
● In our experiment,

25

Goodput Response Time
(avg)

RPS

Picoquic +9.43% +0.92% -0.7%

Quicly -10.12% +23.17% -16.1%

Conclusion (cont.)
● In all cases, sendmsg() and recvmsg() were faster in OSv

○ The gain was greater where the avg size of packets was larger
■ Res. Time (1B / 1pkt) < RPS (2KB / 2pkt) < 2GB File (avg pkt size ~ MTU)
■ This is probably because of the one data copy being saved

● It attributed to the improvement of Picoquic’s goodput, while keeping the avg
response time and RPS of Picoquic OSv at a similar level (+0.92%/-0.68% resp.)

● Quicly OSv was significantly slower (30.6-87.1%) in the other sections including TLS
○ This offset the gain from sendmsg() and recvmsg()
○ No overall improvement in all of the scenarios

● ACK Handling was faster only in the Picoquic’s Goodput and Response Time scenario
(25.5%/4.1%, resp.)

26

